NASA CONTRACTOR

Wiy

REPORT

LOAN COPY: RETURN TO
AFWL  (WLIL-2)
KIRTLAND AFB, N ¥1EX

NASA CR-1175

THE RESPONSE OF A
SIMPLY SUPPORTED PLATE
TO TRANSIENT FORCES

Part I - The Effect of N-Waves
at Normal Incidence

by Anthony Craggs

Prepared by
UNIVERSITY OF SOUTHAMPTON

Southampton, England
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. « SEPTEMBER 1968

wlig



. ﬁ*‘*«.

TECH LIBRARY KAFB, NM

I IR A

0060307

ANOAONA VIV AL Y

THE RESPONSE OF A SIMPLY SUPPORTED PLATE TO TRANSIENT FORCES,
Covlanita ! iﬁ%‘lﬂ—‘fh‘e Effect of N-Waves at Normal Incidence,

By-Antheny-Craggs™

: : ¢ UL
= L iz @) (77,%/ e ! o£‘7) &

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Grant NerNGR 52-025-003 by
we. .- UNIVERSIEY-0F SOUTHAMPTON &rev
Southampton;-England
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 — CFSTI price $3.00

) 74E~—



THE RESPONSE OF A SIMPLY SUPPORTED PLATE TO TRANSIENT FORCES

PART I: THE EFFECT OF N-WAVES AT NORMAL INCIDENCE

By Anthony Craggs
Institute of Sound and Vibration Research
University of Southampton, England

SUMMARY

_ A numerical method is presented for determining the response of a
structure to transient forces of arbitrary form. It is used to evaluate the
response of a simply supported plate to an 'n' wave at normal incidence.

Three response parameters are considered: the displacement, the acceleration
and the stress at a particular point on the plate. It is shown that the
fundamental mode dominates the displacement and stress responses in all cases.
However, there is a significant contribution from the higher modes in the
accelerations. The maximum response occurs when the duration of the wave is
equal to the fundamental period of the plate.

INTRODUCTION

This report describes a preliminary investigation into the effects
of Sonic Booms on parts of building structures.

There are several papers which deal with the response of plates and
beams to 'n' waves, notably by BENVENTSTE and CHENG (1) and CHEHGY, using a
Fourier Integral transform technique. The problem treated was that of an
'n' wave with zero rise time; this gave a substantial saving in the amount of
algebraic manipulation required. One of the inherent difficulties with trans-
form methods of solving transient problems, and methods involving a direct
integration of the Duhammel Integral is the degree of labour required even
for pulses with fairly simple shapes. Damping can also increase the amount
of work considerably. TFurther, once the formal algebraic solution has been
written out it is still necessary to compute numerical values from this for-
mula, and this is only for a special case. A new formula is required for a
different shaped pulse. In this report a numerical method is presented,
which is based on the principle of superposition and it is used to compute
the effects of rise time and pulse duration on the response. The superposi-
tion process 1s concisely expressed in a matrix form. One of the advantages
of the method is the ease with which it may be applied to solving response
problems to a forcing function of any arbitrary form.

*Unpublished work submitted by D. H. Cheng, City College of the City
University of New York, prepared during temporary assignment at NASA Langley
Research Center.



The time history of a Sonic Boom is classically represented by
a capital 'N'. Some actual characteristics are given in reports by
HUBBARD and MAGLIERI (2) also WEBB and WARREN (3). There the time
history is shown to vary from a single 'N' to two 'N's superimposed on
one another. Nearly all of the traces are distorted in some way and
show wide variation in the rise and fall time. Since there are these
differences in the shape of the pulse it is essential that the method
used to study the structural response is flexible.

For continuous structures, problems of a transient nature may
be solved by using a series of normal modes, so that the nature of the
loading and the response must be such that a reasonable accuracy may be
obtained by using only a finite number of modes. BENVENISTE and CHENG (1)
points out that for conditions in which the ratio of the periocd of the
boom to the fundamental period of the plate is in a range from 1/2 to L,
the response is dominated by the fundamental mode. The plate and beam
that were considered were then idealised to single degree of freedom sys-
tems. However, only the series for the disp.acements were given when
examining the rate of convergence and this is not particularly sensitive
to the higher terms.

The response to the loading may be displacement, velocity,
acceleration or stress, and, depending upon what criterion is to be used,
each may be important. However, their time histories are different and
it is necessary, therefore, to treat them individually. The stresses and
accelerations contain a greater contribution from the higher modes and
consequently more modes may be needed when evaluating the response,

The object of the present work is to study the variation in the
response parameters: displacement, acceleration and stress under various
loading conditions. The different load conditions to be investigated are
realised by changing the rise time and duration of the boom.

SYMBOLS
W displacement
W acceleration
o) stress
) mass density
w natural frequency

E Young's Modulus



th

b,p
h(t)

plate thickness

pressure, maxXimum pressure

Unit impulse response function

Integrating matrix containing unit impulse functions

Integrating matrix for unit impulse functions of the
principal co-ordinates

Overall plate dimensions
Aspect ratio = b/a

dimensionless quantities having the same time
dependence as the principal displacement

dimensionless quantities having the same time
dependence as the principal acceleration

(82m® + n?)/(82 + 1)
th
natural frequency of m, n mode

dimensionless time factor
time

periodic time of fundamental mode

duration of pulse

damping coefficient

THE RESPONSE OF A SIMPLE UNDAMPED OSCILLATOR TO AN IMPULSE

In order to obtain a numerical solution to an arbitrary forcing
it is intended to break up the forcing function into a finite number of
segments of equal duration. Fach segment is then treated as an impulse and
the net response is built up by the process of superposition. There is,
however, a limitation on the width of each segment if the response is to
be governed almost entirely on its area, i.e., the net impulse, and not, to
any marked degree, on its shape. One restriction is that the duration is



smell when it is compared with the period of the system. A more
quantitative bound may be found heuristically by comparing the responses
of a simple oscillator to different shaped pulses.

Fundamental Results

For free vibration the displacement of a simple oscillator is
dependent only on the initial conditions and it is given by:

V.
i .
x = x,; cos ut +—= sinwt (1)

where X; and Vv, are the initial displacement and velocity respectively
and w " 1s the datural frequency.

In response to a pulse having any time dependence, f(t), and
duration, T, the solution for the displacement when the system is
left vibrating freely, may be obtained from the Duhammel Integral and it
is given by:-

x(t) = ] fiT) . 8in w(t = 1)dr t > T (2)

0

and because the limits are independent of +t, then

T
ge) = & oo | HE) 2 (gin (- )
0
T
= £(t) cos w(t - 1) dr (3)
0

These results will now be applied to the pulse shown in Fig. 1.

Rectangular Pulse., f(t) =F O0<t<T; f(r) =0 T >T.
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At time t =T

T T

F sin w(T - 7)dr ; v. = F cos w(T - 1)drt.

0 0

|
~
~—
lle
14
—
=]
|
~
~—
w

Making the restriction that sin w(T

then cos w(T - 1) 21 - 3 w?(T - 1)2
T
] — E - 1 2
. o xT = = wT = wrte.dtr = zFT
0
T
Vo =F 1 - %wz(TZ - 271 + t2) = FT(1 - -é- Ww2T?),
0
Substituting X and v, in (1) then gives:
x = %2 (1 - '16 02T?) sin w(t - T) + FT.g- cos w(t - )




and after putting wT = A, and FT = A, the area under the pulse, then

x =2 ((1 - 1/6)2) sin o(t-T) + 1A cos w(t-T)) ()
for t > T,
Triangular Pulse. f(7) =% .F O<t<T; f£(zt)=0 t©>T.
Making the same restrictions as in the previous case, then
T
Xq = g@ Tet = 12.d1 = %- FT2
0
iy
Vo = % T — %wz(Tz'r - 2Tt2 + t3)ar = 3PT(1 - 1—2 w2T2).

0

Again substituting for X, and vy in (1), now putting A = ZFT

gives the result

((1 - —E-AZ) sin w(t - T) + 1 A cos w(t - T)) (5)

x = 12 3

gl

F(1 -1/T) 0<t<Ty; f£(r) =0 1>

Triangular Pulse. f(1)

Using a similar procedure to the previous cases, then

x=48 (- %) sin u(t = 1) + 2\ cos ult - 1)) (6)

Equations (%), (5) and (6) may be arranged into the following form

_A 1.2 1.4 s = e S
x==(1-=32% + ") sin (w(t = T) + ¢1); ¢; = tan (7)
® 12 3 2(1 - %AZ)
X = %(1 - T%‘*Z * i%lr’\“) sin (w(t = T) + ¢2)3 ¢p = tan > 17, &
3(1 - ==22)
12
x =201 - B2 + %) sin (w6 - T) + $3); ¢3 = tan™" __A—ﬂ' )
3(1 - EE% )



These results show that, provided A < 3, the most important factor
which influences the response is the area under the curve, i.e. the
magnitude of the impulse; +the shape of the curve is of secondary
importance, Therefore, for all practical purposes any forcing
function can be divided up into a finite number of rectangular pulses,
Further, instead of using equation (&) for computing the response to
each impulse the simpler form

el

sin w(t~-T) t>T (10)
may be used.

At the worst, for A = 3, the error in the amplitude is
approximately 5% and this is when a pulse of the type shown in Fig. 1(c)
is being approximated. Most of the time the pulses will be of a
trapezoidal form and the error will be much smaller. In equation (10)
the effect of the phase angle, ¢, has been neglected. This is
reasonable since ¢ is dependent only on the magnitude of the step size
and not on the size of the impulse, and, provided that the step size is
constant, the error in the time lag may be made up by simply moving the
time origin along /2.

The Matrix Form for the Superposition Process

Once the forcing function has been idealised into a finite number
of rectangular pulses, the total response may be found by superimposing,
with the appropriate time lag, the response from each one. If the impulse
response and forcing functions can be stored numerically the superposition
process may be expressed as a matrix multiplication, and in this form is
easily evaluated on a digital computer. The matrix form may be deduced
as follows:

Let Fr be an array of numbers, each number being the value of the input
force at the time r x At, where At is the time increment. Let hS be

an array of numbers each being the value of the unit response funct%on at
the time s x At, as may be calculated from equation (10). The time
increment, At, needs to be the same in both the unit response and the
forcing arrays, and providing it is sufficiently small the response, W,
at the time s x At is given by:

w, = At(Fih  + Fh o + Fh  + Fh o+ ...)
S
wo= M } Fh_ ..
r=1




This equation may in turn be expressed as a matrix multiplication. If
¥ is now an array containing the numerical values of the response
history at the time intervals At, the relationship between ¥ and

F is

wi = At hl Fi
Yo h, by F
Vg h3 h, by F
* * h3 h2 hl .
L ] [ ] L ] - . hl Y
W h h h h ceeee N F
A s s=1 s=-2 s=3 ;J | n_
fw} = at [H] {F} (11)

H, is a square lower triangular matrix of order s x s; the
non-zero elements of the r th column containing the first (s = r + 1)
terms of the unit response g. It should be noted that, h, may be
for any response parameter, 1.e. displacement, velocity, acceleration
or stressy; and, although for purposes of illustration it is convenient
to consider H as a full square matrix, in the computation this would
involve an excessive amount of storage space; and in fact only the
unit response, h, needs to be stored.

If a normal mode approach 1s to be used the above may be
extended to a system with a finite number of degrees of freedom:
the displacements then become the generalised displacements and the
forces the generalised forces for each mode. For this case
equation (11) becomes

{a} = at [R] {q} (12)
The response at point (x, y) on the system is then

{w} = Aty (x,y) [Rl] Q1+ v, [32]{Q2} z )
13

R is an integrating matrix similar to H, containing the unit
impulse response array for the generalised co-ordinates, q. Q 1is
the array for the generalised forces and % the mode shape. The number
of modes to use and therefore the number of times that equation (12)
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needs to be applied will depend upon the accuracy sequired in the solution.
The equations (11) and (12) represent the Duhammel Integral:
t

w = F(t) &n(t - t)dr,
0

in an approximate matrix form. There are, however, several advantages to

be gained from this formulation: (i) once the impulse response and

forcing is defined the solution is obtained simply by a matrix multiplication
no matter what degree of complexity the forcing function may be; +this could
be an array of random numbers, (ii) the presence of damping does not increase
the labour in obtaining a solution as it does in the analytical methods.

TRANSIENT RESPONSE OF A SIMPLY SUPPORTED PLATE

The results of the previous sections are now applied to the
response of a simply-supported plate to Sonic booms. In obtaining a
solution a normal mode approach is used and any damping present in the
system is assumed not to couple these modes. Also, it will be assumed
that the plate is vibrating in a vacuo so that there is no acoustic
back pressure acting. Three response parameters are to be computed:
the displacement, stress and acceleration in order to compare the
different effects of the higher modes.

General Theory

The equation of motion of a uniform plate in forced vibration
is

—_— + 2 +
at2 120 (1 - u2) ax* 3x2 9y2 oyt oh

2 2 y u Y
%w Eh ( 3w L, 3w 3w _ P(x,y,t) (1k)

To obtain a solution of this equation the right hand side is first
put equal to zero and in this form it is satisfied by a single mode, wr,

with time dependence  sin mrt giving:

2 aty 3ty 3ty
Eh r + 5 r + r - wiwr (15)
120 (1 - u2) ox 3x2doy2 ay™



A solution of equation (14) may be obtained in a series form by making
the substitutions '

ve ] o) vxy)  p= [ p.(t) v(xy)

r=1
giving
o o P ok gl
T oav+ ) En® zr + 2 zwrz + tr = —% PR
el o ogloo (1 - u2) ax ax“ay oy P rr

and after applying equation (15), this equation reduces to

Fa, + w00, = = () v, (xay)

introducing a viscous damping coefficient, Qwr\)dr, into each term of

the left hand side, then equating coefficients of lllr gives
o +20v§ +q = — p_(t) (16)
9 r’ Y q'r ph r

b ra b ra
2
P (t) = p(x,y,t) ¥, (x,y) dxdy + ¥ " (x,y)axdy

00 00

For a simply-supported plate t.bmn(x,y) = sin % . sin ZX

b
b a b a
2 - . 2 mnx . 2 nny _ a.b
and ll'mn(x,y)dXdy = sin” == . sin” % dx.dy = ——
¢ 0 0 0
b a
therefore p _(t) = e p(x,y,t)v dx.dy
m,n a.b ¥m m,n °
0 0

10
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Response to Plane Pressure Pulse at Normal Incidence

When a plane pressure pulse is normally incident on a flat
plate the forcing pressure p(x, y, t) can be expressed in the separable
form

P(x: Yo t) = 5' fl(f)- fz(xs Y)

~

P is the maximum pressure; fl(T) = 1 and fl(x,y) =1

b a
N

then Pm,n ;%% sin E%£ . sin E%E dx.dy

= 16 & . ¢ where ¢ = 1/m.n
2 mn m,n

It is useful to work in terms of dimensionless parameters and this may
be achieved by expressing the responses in the form of a factor x the
maximum stiffness response in the first mode, which may be obtained by
neglecting the inertia term; the response would then follow the form of
the forcing function. Since, under these conditions, the response is
dominated by the fundamental mode the factor for the displacements
represents, approximately, the dynamic amplification.

s 1 P a6
11 stiff ph 2 2 2
tﬁl phﬂml__L

Now if @, = 4 then substituting this in equation (16)

: on * Y1 stife?
gives:

. . ) ) )
dmn + 2wmn vdmn + W mndmn c n® llfl(r)

and using the Duhammel Integral gives

- v(t-1)
t fl(T)e mn sin w V l—VE(t—T).dT
émn = wilcmn 2 -
w 1-v
mn
0
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Now if R = wmn/wll; t = ory b T = ==

where A is a dimensionless time factor, some fraction of the lowest
period of the system, 2n/wll, then in the notation of the previous

section:
B v(r-s+1)a

s mn

f(ri)e . 2

dmn(sh) =Xrc z - s1n(RmnV/l—v (r=s+1)))
r=1 Rmﬁyl-v

fa t=1xrc [R]{g}

The dimensionless displacement, w(x,y), can now be written
in terms of the normal modes:

W} = Albey [R]] + ¥oc,[R], + Ve, [R]3+ ...) {f}

The suffix notation used now refers to the order in which each generalised
co-ordinate occurs in the frequency scale.

The Acceleration and Stress Responses

It has already been mentioned that the unit impulse response
could be computed for any parameter. The impulse acceleration response
is

2
W = —wle—vwlt (2v cos V 1—v2 t o+ 125&517% sin wt)
1l -v

The computed value in the dimensionless form is:

Wy) =l 3 wf &y opee Y120xsY) (17)

The stresses in the x and y directions are computed from the two
equations

s = " 32 r o 32w
X (1 - ?2) 9x2 ay?2
N { 2w, 9%
Yo(1- u2) 5y 2 9x°

12



After substituting for w in terms of the normal modes, that is

0 = Z d sin- 22X sin EEX-, in these equations the stresses may
mn a b

be expressed in the dimensionless form

- 16 Ep 2 un®
o (x,y) = o/ = ) (m= +=— ) da ¢ (x,y)
x o1 - p2)abw?y; m g g2 ma
o (x,y) = o/ 168D =7 7 (EE' + um?)d v (x, y)
¥ y (1 - u?)abw?q; m n g2 mn mn
(18)

The Range for the Experimental Loading Parameters

The range of data used in the computation which is considered to
be of practical interest is given below. The upper limit for the period
ratio could have been much higher than 3, but beyond this value the
response 1s easily predictable as the displacement response follows the
time history of the forcing function.

Period Ratio /T 3 to 3

Rise Time T/20 to T/L

For the isochronous case, T/T = 1, both a single and double 'N' and
two damping coefficients, V = .002 and .02, were considered.

Aspect Ratio b/a = 1.5

COMPUTATION PROCEDURE

A FORTRAN programme was written, based on the theory given in
section 5, to evaluate the response of the plate under the various loading
conditions.. Since the computation time was important when using the
programmes a step size had to be found that was compatible with the nature of
the problem. For good resolution the step size needed to be a fraction of the
lowest period of the idealised system and it was necessary, therefore, to
have an estimate of the number of modes that were effectively contributing
to the response under the different loadings. This was found by a trial
and error procedure: first computing the response the response with a
large number of modes, and then comparing this with the response that was
obtained when the number of modes and step size were halved.

i3



When the pulse is normally incident on the plate only the odd
modes are excited, and for the period ratios considered it was necessary
to use the first three modes in the set, i.e. m=1, n=1, 3, 5, to
give good accuracy. The effect of the higher modes n = 3, 5 were more
significant for the accelerations than for any other parameters.
Generally, for displacements and stresses, a step size, A = 7/20 was
found to be sufficient though for the accelerations it was necessary to
have A = w/hO.

RESULTS

Some typical response curves are shown in Figs. 2 to 13, these
are included in order to illustrate the salient features about the nature
of the response. In order to compress the amount of data it is necessary
to choose only the important gquantities: the maximum values of the dis-
placements, stresses and accelerations for the different loading variables
are shown in Tables 1 and 2. Table 1 shows the values for the forced
motion and Table 3 the values for the ensuing free vibration. Any marked
contribution from the higher modes increases the number of peaks in a
given time; +the effect is accounted for by the quantity, NP, the

number of positive peaks in one cycle of the fundamental mode; these
values are also included in the tables.

Figs. 2 to 9 show the time history of the stresses and displace-
ments for the different 'n' waves., With the particular plate considered
there is very little difference in the form of the stress and displacement
responses, so that it is not necessary to show them both. A brief survey
of these curves shows that the effects of the loading may be different
depending upon whether the system is being forced or whether it is in the
subsequent state of free vibration; it is necessary, therefore, to
specify the location in time.

During the period over which the pulse is acting, when the initial
rise in pressure is taking place, a decrease in rise time causes an increase
in the magnitude of the response. Figs. 2 to 9. This is because decreasing
the rise time effectively increases the net impulse and hence the displace-
ment, It might be considered that decreasing the rise time increases the
content of the higher modes, but for the displacements and stresses the
effects must be small as the response appears to be dominated by the funda-
mental mode in all the cases studied.

As might be expected, from simple frequency response considerations,
the overall forced motion is governed by the particular value of the period
ratio. When /T is small as in Figs. 8 and 9, both w and ¢ are small;
when 1/T is large (1% to 3) as in Figs. 2 to 5, the magnitude is greater.
The maximum values seem to lie between 1.5 and 2.,0; their position and
magnitudes being strongly influenced by the rise time. Under these conditions

1k



the form of the forced motion may be clearly distinguished with the
harmonic motion superimposed.

When the plate is vibrating freely at the time, t, greater
than 1 it is the overall shape of the pulse and its duration which is
important. Changes in the load parameters bring variations in the form
of the response, but not always in the same direction. For instance,
if Figs. 2 and 3 are compared, it may be seen in the former that
decreasing the rise time increased the maximum response; but, in the
latter the exact opposite occurs. The fact that the response in a
particular mode may be small at zero in the free vibration, even though
there is substantial movement during the application of the pulse is
interesting. It is shown in the Appendix, for an undamped mode, that
this occurs when the Fourier Integral of the pulse is zero at the
natural frequency w_. If this condition is almost satisfied
substantial changes 20 the response may result by only a minor change
in either the forcing function or system characteristics. When the
effect is to decrease the response it gives rise to an apparent increase
in the damping.

The largest dynamic amplification occurs when the period ratio
is unity, the isochronous condition, where the push-pull effect of the
boom matches up with the natural frequency of the fundamental mode.

Fig. 6 shows the variation in the resonant response with the rise time;
the maximum value, about 2.6, occurs when the rise time is one quarter
of the fundamental period; the lowest, about 2.1, obtained by extra-
polating the illustrated results, occurs when the rise time is zero.

It is possible to have a twin boom in the wake of the main one
due to ground reflection, and at a certain height the pressure loading
will be that of a double 'N', The effects of this for the isochronous
condition is shown in Fig. T, it may be noted that the dynamic amplification
factors are now double those for the single boom, the maximum now being
5.2. When the damping factor was reduced from 0.02 to 0.002 the
maximum value increases a further 10% to 5.7.

Figse. 10 to 13 show some of the acceleration curves. The most
striking difference between these and the stresses is that the effect of
the higher modes is more noticeable. When the rise time decreases the
initial accelerations and the contributions of these modes also increases,
as shown in Fig. 10. Because of its dependence on the higher modes the
acceleration does not change with alteration of the period ratio in the
manner that the other parameters do; the maximum values do not fall off
for T/T less than 1. This is shown clearly in Fig. 13 where for T/T
equal to %, the maximum value is 2.1 compared with the values in Fig. 10,
t/T equal to 3, of ~l.5.

15



DISCUSSION

The approximate method used in this work gives results which are
compatible to those obtained from analytical methods, as in (1). Though
it has been applied here to evaluating the response to regular pulse
shapes there is no added difficulty in obtaining the response to more
complex wave forms.

Apart from the special isochronous case it appears from the
results that there will in general be a dynamic amplification of about
2. Since the boom overpressure is not expected to be much above
3 1bs/ft.2 and the static breaking pressure of windows in the region of
80 1bs./ft.2 there is no reason to expect failure to occur under the
load of a single boom.

The fact that the fundamental mode dominates the displacement
and stress responses in all but a few cases is important as it means that
the plate may be idealized as a single degree of freedom systems. However,
it is difficult to make generalisations for other types of loading without
considering the matter further. Under the conditions that the response
of the plate has been studied, the number of modes which make a signifi-
cant contribution is strongly dictated by the spacing of their natural
frequencies relative to that of the fundamental mode. The frequency
ratio, R , for the first 9 modes are shown in Table 3 below; of
these only one third are active under normal incidence, those marked
with an asterisk. These are reasonably well separated.

Table 3
m, n 1,1 1,2 2,1 1,3 2,2 2,3 1,4 3,1 2,4
Rmn 1.00¥ 1,90 3.07 3.70% L,00 5.,54 5,60 6.,24% 7,76

As far as the (1, 3) and (3, 1) modes are concerned, for the range of
period ratio considered, a crude approximation to the modal coefficients
may be obtained by assuming the forcing function is a step input. The
relative magnitude of the modal displacements in the series is
l/mn.R;n, so that the (l, 3) mode has only about 2.5% of the fundamental

contribution and the (3, 1) mode less than 1%. The other modes are
brought into play when the boom arrives obliquely at the plate surface.
The significance of these are shown in part II of this paper (NASA CR-1176).

16



CONCLUSIOCNS

A method for determining the response of a structure to an
arbitrary waveform has been presented. This has been applied to finding
the response of a simply supported plate to 'n' waves at normal incidence.
Both the period ratio, T/T, and the rise time were varied. The following
conclusions are drawn.

(i) Effect of Period Ratio 1/T: The maximum amplification
factor occurs when 1/T is unity and in this condition the maximum
value is sensitive to a variation in the rise time. The greatest
magnification factor for displacement is 2.6.

(11) Effect of Rise Time: In the duration of the pressure
pulse, decreasing the rise time increases the magnitude of the response,
and increases the contributions from the higher modes. When 71/T equals
one, the maximum amplification factor occurs when the rise time is § of
the duration of the pulse. It is then about 2.6, For zero rise time
the amplification factor is about 2.1l. When a double 'N' excites the
system under isochronous conditions these factors are doubled.

(iii) For the plate (aspect ratio 1.5) there is little difference
between the displacement and stress time histories as these were almost
completely dominated by the fundamental mode. However, the accelerations
are affected more by the higher modes and, consequently, the response
contalns more peaks.

(iv) Under certain conditions the response for the time t > T,
(i.e. when the system is left vibrating freely) is very small. This is

dependent more on the overall shape of the pulse and its relation tc the
fundamental period of the system than to any other single parameter.

APPENDIX
The Condition for an Undamped Oscillator to have Zero

Response after the Application of a Pulse

If the duration of the pulse is, TP, then the displacement

and velocity at the time <t = T is given by:
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F(t) sin mn(T - T)drt

ElH

x(T)

o

T
F(t) cos wn(T - T)dT.

2(T)
0
These conditions

Now, for zero response, x(T) = %(T) = O.
may be expressed by a single complex equation if use is made of the
phase plane and plot J‘{(T)/wn as the abscissa and x(T) as ordinate then

W(T) = X(S)T) + jx(T)
n
T
b
1 ..
= E; F(r)(cos wn(T - 1) + J sin wn(T - T))ar
0
TP Tb
Jw_(T-1) JuwT -ju_T
- [ F(t)e © dr = = F(t)e %dr
W w
n n
0 0
ernTP i
= F(t)e 9%n"ar F(t) =0<t < T
n D

-0

The term inside the integral is the Fourier Transform of the
and the condition for zero response after the application

input F(1),
of a pulse is that the Fourier Transform should be zero at the frequency,

W e
n
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TABLE 1

FORCED MOTION

w oxX oy 7;5
/T | RIS ay fw | owax | w MAX | W | Max
p D D
/2| 1.5 | 1 | 1.6%| 1| 1.05]| 1|
3 T/h | 1.63| 1 1.78) 1 1,13} 1| =-1.37| 1
T/8 | -1.6k | 1 |-1.87| 1| -1.23| 1| -l.k0o| 3
T/2 | 1.45] 1 | 1.61] 1| 1.05] 1 -
2 T/4% | 1,58 1 1.69 1 1,08} 1| -1.31| 3
T/8 |-1.83| 1 | -2.09| 1 | =1.36| 1 1.831 3
31/8 [-2.18| 1 [-2.41] 1| -1.53] 1] 1.90
1.5 T/h |-1.73| 1 | -1.87| 1| -1.23| 1 1.h7
T/8 |~k | 1 | -21.67T) 1| ~1.09} 1 1l.k9
o/ |2l | 1 |2um3) 1| 19| 2
1 T/10[-2.19 | 1 |=-2.54 | 1 | «1.70| 1 2.63
T/20{=2.05 | 1 |-2.31) 1 | =1.52| 1 2.33
3r/e0| o.70| 1 | 0.86] 4| o8| |
0.5 T/10| 0.73| 1 0.92 | k 0.71 | 4| -1.36
T/20| O0.T4 | 1 0.9k | & O 7L | 4| -1.49




TABLE 2

FREE MOTION
w ox oy
/T R.T. T —

MAX NP MAX Np MAX NP MAX NP
T/2 0.195| 1 0.223 1 0.149 1 -~ -
3 T/4 1l.21 1 1.37 1 0.915 1| -0.97 1
T/8 1.57 1 1.80 1 1.2k 1}-1.08 1
T/2 0.13 1 0.153 1 0.12 1 - -
2 T/4 1.ko 1 1.59 1 1.06 1{-1.08 1
T/8 1.73 1 1.96 1 1.31 1]-1.58 1
3T/8 1.83 1 2.09 1 1.h0 1{ 1.78 1
1.5 /4 1.12 1 1.28 1 0.82 1|-1.15 1
T/8 3811 1 0.L46 1 0.36 3 |-0.7T6 6
T/ 2.24 1 2.53 1 1.66 1 - -
1 T/10 2.09 1 2.38 1 1.66 b }-2.36 3
T/20 1.95 1 2.19 1 1.52 1 |{-2.10 1

3T/20| -0.93 1 |-1.08 1 ~-0.79 1
0.5 T/10| ~-1.03 1 }|-1.15 1 ~0.TT 1 {=1.11 L
T/20| -l.13 1 |-l.ko 1 ~0.94 1 1.92 6
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ox, Effect of Rise Time, Period Ratio, 3.
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